Homework 4

AMS 20: Mathematical Methods for Engineers
Due Tuesday August 27, 2019

Name: \qquad Student ID: \qquad

Homework assignments will count for 25% of your overall grade. Attach extra paper as needed. Show all of your work for full credit.

1. [20pts] Matrix Exponential. Consider the following linear system.

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] \vec{x}(t)
$$

(a) $[\mathbf{1 0} \mathbf{p t s}]$ Find the general solution to the ODE.
(b) $[\mathbf{1 0} \mathbf{~ p t s}]$ Use part (a) to determine the matrix exponential $e^{A t}$.
2. [25pts] Matrix Exponential. Consider the following linear system.

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{rr}
3 & -2 \\
0 & 3
\end{array}\right] \vec{x}(t), \quad \vec{x}(0)=\left[\begin{array}{r}
2 \\
-1
\end{array}\right]
$$

(a) [$\mathbf{5} \mathbf{~ p t s}]$ Show that matrix A satisfies $(A-r I)^{k}=0$ for some number r and some positive integer k.
(b) $[\mathbf{1 0} \mathbf{p t s}]$ Use part (a) to determine the matrix $e^{A t}$. Hint: Use the formula

$$
e^{A t}=e^{r t} e^{(A-r I) t}=e^{r t}\left(I+(A-r I) t+(A-r I)^{2} \frac{t^{2}}{2!}+\cdots+(A-r I)^{k-1} \frac{t^{k-1}}{(k-1)!}\right)
$$

(c) $[\mathbf{1 0 p t s}]$ Compute the unique solution to the ODE using: $\vec{x}(t)=e^{A\left(t-t_{0}\right)} \vec{x}_{0}$.
3. [15 pts] Non-Homogeneous Matrix-Vector ODEs. Find the general solution to the following linear system.

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right] \vec{x}(t)+\left[\begin{array}{c}
t^{-1} \\
2 t^{-1}+4
\end{array}\right]
$$

4. [20pts]Non-Homogeneous Matrix-Vector ODEs. Find the unique solution to the following homogeneous matrix-vector IVP.

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{rrr}
5 & -4 & 2 \\
-2 & -2 & 2 \\
4 & 2 & 2
\end{array}\right] \vec{x}(t)+\left[\begin{array}{c}
2 t \\
e^{3 t} \\
-5
\end{array}\right], \quad \vec{x}(0)=\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right]
$$

5. [20pts] Non-Homogeneous Matrix-Vector ODEs. Find the unique solution to the following homogeneous matrix-vector IVP.

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
3 & -2 \\
4 & -1
\end{array}\right] \vec{x}(t)+\left[\begin{array}{c}
6 t^{2} \\
\sec (2 t)
\end{array}\right], \quad \vec{x}(0)=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

