Homework 3

AMS 20: Mathematical Methods for Engineers
Due Tuesday August 20, 2019

Name: \qquad Student ID: \qquad

Homework assignments will count for 25% of your overall grade. Attach extra paper as needed. Show all of your work for full credit.

1. [10pts] Rewriting ODEs in Matrix-Vector Format. Write the ODE as a linear system in the matrix-vector form: $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{g}(t)$.

$$
\frac{d^{4} y}{d t^{4}}+11 \frac{d^{3} y}{d t^{3}}+\frac{1}{2} \frac{d y}{d t}+6 y=t^{2}+\ln (t)
$$

2. [30pts] Homogeneous Matrix-Vector ODEs. Consider the following second order ODE IVP.

$$
2 u^{\prime \prime}-u^{\prime}-6 u=0, \quad u(0)=1, \quad u^{\prime}(0)=-3
$$

(a) [10 pts] Write the IVP as a linear system in the matrix-vector form: $\vec{x}^{\prime}(t)=A \vec{x}+\vec{g}(t)$ with the initial condition $\vec{x}(0)=\vec{x}_{0}$.
(b) $[20 \mathrm{pts}]$ Compute the unique solution to the linear system.
3. [20 pts] Homogeneous Matrix-Vector ODEs. Find the general solution to the following linear system.

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 0 & 3 \\
2 & 3 & 0
\end{array}\right] \vec{x}(t)
$$

4. [20pts] Homogeneous Matrix-Vector ODEs. Find the unique solution to the following homogeneous matrix-vector IVP.

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right] \vec{x}(t), \quad \vec{x}(0)=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

5. [20pts] Homogeneous Matrix-Vector ODEs. Find the unique solution to the following homogeneous matrix-vector IVP.

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-3 & -1 \\
2 & -1
\end{array}\right] \vec{x}(t), \quad \vec{x}(\pi)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

