Homework 1

AMS 20: Mathematical Methods for Engineers
Due Tuesday August 6, 2019

Name: \qquad Student ID: \qquad

Homework assignments will count for 25% of your overall grade. Attach extra paper as needed. Show all of your work for full credit.

1. [20pts] Separable ODEs. Consider the following ODE.

$$
\frac{d y}{d x}=2 \cos (x) \sqrt{y+1}
$$

(a) (5pts) Determine the order of the ODE and state whether it is linear or nonlinear.
(b) (15 pts) Find the general solution to the ODE.
2. [30pts] Integrating Factor. Consider the following IVP.

$$
\frac{1}{t} \frac{d y}{d t}-\frac{2 y}{t^{2}}=t e^{-7 t} \quad y(1)=0
$$

(a) (10pts) Determine the interval on which the solution to the IVP is valid.
(b) (20pts) Find the solution to the IVP using an integrating factor.
3. [10pts] Integrating Factor. Find the general solution to the ODE using an integrating factor.

$$
\frac{d u}{d x}=\frac{u-x^{2}}{4}
$$

4. [20pts] Exact ODEs. Determine whether the following ODE is exact. If the equation is exact, find the solution to the IVP.

$$
2 x y-\sec ^{2}(x)+\left(x^{2}+2 y\right) y^{\prime}=0 \quad y(0)=2
$$

5. [20pts] Application. The UCSC police are called to a crime scene in a dorm room where a murder victim has been found. When they arrive at 10:00AM, the temperature of the body is taken to be $82^{\circ} \mathrm{F}$. One hour later, the temperature of the body is measured again and found to be $75^{\circ} \mathrm{F}$. Use Newton's law of cooling to find the time of death if the ambient temperature of the dorm room is $70^{\circ} \mathrm{F}$.
Newton's law of cooling states that the temperature T of an object changes according to the following differential equation

$$
\frac{d T}{d t}=-\kappa(T(t)-\alpha)
$$

where α is the ambient temperature, κ is the cooling constant, and t is time measured in hours. (Hint: First, find $\mathrm{T}(\mathrm{t})$, then find t when the temperature of the body is a normal $98.6^{\circ} \mathrm{F}$.)

